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Synthesis of isocorrole and the higher homologues
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Abstract—Bis(azafulvene) derivative of gem-dimethyldipyrrylmethane reacted with 2,2 0-bipyrrole under neutral conditions without
catalyst to give a mixture of expanded isocorroles in ca. 50% total yields. GPC separation gave eleven porphyrinoids containing 4, 8,
12, 16, 20, 24, 28, 32, 36, 40, and 44 units of pyrrole.
� 2006 Elsevier Ltd. All rights reserved.
Isocorrole is a tautomeric form of corrole where one of
the three meso-carbons of the (1.1.1.0)-type tetrapyrrolic
macrocycle is sp3-hybridized and two NH protons are
inside the cavity,1,2 although a (2.0.1.0)-type structural
isomer is also called by the same name.3 The isocorrole
nucleus has only recently been synthesized by the con-
densation of two parts of 3,4-diethyl-2-formylpyrrole
1 with gem-dimethyl-3,3 0,4,4 0-tetramethyldipyrryl-
methane-5,5 0-dicarboxylic acid 2a followed by the oxi-
dative coupling of the resulting a,c-biladiene in the
presence of Ni(OAc)2Æ4H2O.2 On the other hand, the
[2+2]-type condensation of the diacid 2a and 5,5 0-di-
formyl-3,3 0,4,4 0-tetraethyl-2,2 0-bipyrrole 3a did not give
isocorrole 4a at all, but afforded cyclooctapyrrole 8a and
cyclododecapyrrole 12a (see Scheme 1).1 These ex-
panded isocorroles are closely related to the calixphyrins
where both sp2- and sp3-hybridized bridging carbons are
present in the porphyrin framework.4 Thus, more flexi-
ble ring structure is expected for the expanded isocor-
roles in comparison with the expanded porphyrins
with complete cycloconjugation. In view of the fact that
there has been very little work on the isocorrole deriva-
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Scheme 1. Synthesis of cyclooctapyrrole 8a and cyclododecapyrrole 12a by
tives in spite of their importance as a member of por-
phyrinoids, we have applied our original synthetic
method using bis(azafulvene) to the preparation of
gem-dimethylisocorrole and the higher homologues.5

A CH2Cl2 solution (40 mL) of gem-dimethyl-2,2 0-bis(6-
phenylazafulvenyl)methane 26 (0.48 mmol) and 3,3 0-di-
iso-butyl-4,4 0-dimethyl-2,2 0-bipyrrole 37 (0.48 mmol)
was stirred at room temperature for 16 h under argon.
After oxidation with 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (abbreviated hereafter as DDQ)
(1.44 mmol), the reaction mixture was purified by col-
umn chromatography to give isocorrole 4 in 27.8%
yield. The higher homologues 8, 12, 16, 20, and 24 con-
taining 8, 12, 16, 20, and 24 pyrrole units were separated
by gel permeation chromatography (GPC) in 9.5%,
5.8%, 3.2%, 2.5%, and 1.5% yield, respectively, as shown
in Table 1. When the reactant concentration was
increased from 0.012 to 0.027 mol/L, the yield of higher
homologues increased in sacrifice of the yield of 4
and the total yield of the macrocycles decreased
from 50.5% to 44.2% (Table 1, entry 2). Addition of
orphyrins; Corrole.
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Figure 2. UV-vis spectra of isocorrole 4 and the higher homologues 8,
12, 16, 20, 24, 28, and 32 in CH2Cl2.

Table 1. Synthesis of cyclopolypyrroles 4n
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Entry Additivea Conc.b Yield (%) of 4n (n = 1–8) Total

4 8 12 16 20 24 28 32

1 None 0.012 27.8 9.5 5.8 3.2 2.5 1.5 tr — 50.5
2 None 0.027 10.3 10.4 9.4 6.8 3.8 2.3 1.2 tr 44.2
3 Zn(p-t-BuC6H4CO2)2 0.027 4.5 12.8 9.6 7.6 4.6 2.7 1.6 0.7 44.1

a Zinc p-tert-butylbenzoate (2 molar equiv) was added.
b Concentration of 2 and 3 (mol/L).
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2 M equiv of zinc(II) p-tert-butylbenzoate further chan-
ged the products distribution in favor of the higher
homologues without affecting the total yield (Table 1,
entry 3). Thus, expanded isocorroles 28 and 32 with 28
and 32 pyrrole units were isolated in 1.6% and 0.7%
yield, respectively. The first fraction in the GPC was fur-
ther separated by using polystyrene–polydivinylbenzene
gel with a larger pore size to result in the isolation of
giant homologues 36, 40, and 44 with 36, 40, and 44 pyr-
role units in the yield of 0.5–0.1%.8 However, the total
yield decreased to only 15% at the reactant concentra-
tion of 0.080 mol/L.

These expanded isocorroles were identified by ESIMS.
The largest homologue, cyclotetratetracontapyrrole 44,
(MW = 6807.1) showed seven signals corresponding to
the diprotonated species at 3405.6 mass (3404.6 calcd
for C473H506N44 + 2H+) through the octa-protonated
species at 852.0 mass (851.9 calcd for C473H506N44 +
8H+) as depicted in Figure 1.

The UV–vis absorption band is red-shifted with increas-
ing the ring size as shown in Figure 2; 420, 541, 538, 557,
574, 582, and 584 nm for 4, 8, 12, 16, 20, 24, and 28,
respectively. The larger homologues 32, 36, 40, and 44
showed virtually the same UV–vis feature with an
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Figure 1. ESIMS spectrum of 44. The calculated mass and the number
of charges are indicated in the parenthesis.
absorption maximum at 586–587 nm. It is noteworthy
that the UV–vis feature of 8 (a strong band at 541 nm
with shoulders at 459 and 642 nm) is quite different from
that of 8a (a strong band at 435 nm with a weak band at
523 nm), whereas 12 and 12a show similar UV–vis spec-
tra with a weak band at around 430 nm (433 nm for 12
and 429 nm for 12a) and a strong band at around
540 nm (538 nm for 12 and 544 nm for 12a).1 These
UV–vis spectra seem to depend on the conformation
of the p-conjugated tetrapyrrolic units and the electronic
interaction beyond the bridging sp3 carbons, that is,
homoconjugation or transannular p–p interaction.
Thus, the UV–vis spectrum converged to that expected
for linear oligomers as the ring size increased.

The cyclopolypyrroles larger than cyclododecapyrroles
have never been reported in the porphyrinoid chemistry
except in our previous work on the expanded porphyrins
having 16, 20, and 24 pyrrole units.5 To the best of our
knowledge, a free base form of isocorrole has never been
reported so far either. The isocorrole 4 shows a B-type
band at 420 nm and Q-type bands at 620 and 675 nm
in the UV–vis spectrum and signals due to the NH pro-
tons at 13.6 ppm and pyrrole b-protons at 6.53 and
6.38 ppm in the 1H NMR. The NaBH4 reduction of 4
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in a mixture of CH2Cl2 and ethanol quantitatively gave
dihydrocorrole 4b9 (see Scheme 2), which showed three
1H NMR signals due to the NH protons at 12.6, 8.56,
and 8.23 ppm and a singlet due to the meso-proton at
5.49 ppm. Therefore, reduction occurred at one meso-
carbon and one pyrrole nitrogen but not at two meso-
carbons. Although condensation of 2a and 3a in the
presence of a large excess amount of BF3ÆEt2O failed
to give isocorrole,1 it has recently been reported that
the acid-catalyzed condensation of dipyrrylmethane
5,5 0-dicarbinol with 2,2 0-bipyrrole gave meso-triarylcor-
roles in ca. 10% yield after DDQ oxidation.10 The latter
reaction is closely related to the present reaction,
because 2 is a dehydrated form of the dipyrrylmethane
5,5 0-dicarbinol.6 Therefore, preparation of 4 in 27.8%
yield is remarkable.

It has been reported that the gem-dimethyldipyrrylme-
thane units are at the crossing point of the figure 8 loop
of 8a on the basis of the X-ray crystallographic analysis
and the NOE NMR experiment in solution.1 A remark-
able difference in the UV–vis feature between 8a and
8 noted above suggests that the loop conformation of 8
is not similar to that of the figure 8 conformation of
8a. The 2D ROESY NMR spectrum of 8 showed a cross
peak between doublets (6.33, 6.18 ppm) due to the b-pyr-
role protons and doublets (0.48, 0.47 ppm) due to the
methyl protons of the iso-butyl group. Therefore, the
conformation of 8 is close to the figure 8 loop where
the bipyrrole units are at the crossing point as shown
in Scheme 3. The conformation of the macrocycle is
dependent on the substitution pattern in the macrocycle
periphery, especially on the steric bulk of the meso-phen-
yl groups in this case.

The formation of macrocycles using bis(azafulvene)
derivative of gem-dimethyldipyrrylmethane and 2,2 0-
bipyrrole proceeded under neutral conditions to give
gem-dimethylisocorrole as the smallest member through
cyclotetratetracontapyrrole as the largest member. The
yield and products distribution were dependent on
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Scheme 2. Reduction of isocorrole 4 to dihydrocorrole 4b.
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Scheme 3. The figure 8 loop conformation of cyclooctapyrrole 8.
the reaction conditions and the substitution pattern of
the macrocycle periphery as compared with the result
of Vogel and co-workers.1 Availability of these nano-
scale cyclooligomers of different ring sizes with the inter-
vals of 4 pyrrole units is of significance in view of their
combinatorial application. Further studies aiming at
more selective formation of the giant porphyrinoids as
well as their use in the supramolecular chemistry are
based on this work.
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